Parametric Signal Modeling and Linear Prediction Theory

 5. Lattice Predictor

 5. Lattice Predictor}

Electrical \& Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by Prof. Min Wu and Mr. Wei-Hong Chuang.
Contact: minwu@umd.edu. Updated: November 19, 2012.

Introduction

Recall: a forward or backward prediction-error filter can each be realized using a separate tapped-delay-line structure.

Lattice structure discussed in this section provides a powerful way to combine the FLP and BLP operations into a single structure.

Order Update for Prediction Errors

(Readings: Haykin §3.8)

Review:
(1) signal vector $\underline{u}_{m+1}[n]=\left[\begin{array}{c}\underline{u}_{m}[n] \\ u[n-m]\end{array}\right]=\left[\begin{array}{c}u[n] \\ \underline{u}_{m}[n-1]\end{array}\right]$
(2) Levinson-Durbin recursion:

$$
\begin{aligned}
& \underline{a}_{m}=\left[\begin{array}{c}
\underline{a}_{m-1} \\
0
\end{array}\right]+\Gamma_{m}\left[\begin{array}{c}
0 \\
\underline{a}_{m-1}^{B^{*}}
\end{array}\right] \text { (forward) } \\
& \underline{a}_{m}^{B^{*}}=\left[\begin{array}{c}
0 \\
\underline{a}_{m-1}^{B^{*}}
\end{array}\right]+\Gamma_{m}^{*}\left[\begin{array}{c}
\underline{a}_{m-1} \\
0
\end{array}\right] \text { (backward) }
\end{aligned}
$$

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Recursive Relations for $f_{m}[n]$ and $b_{m}[n]$

$$
f_{m}[n]=\underline{a}_{m}^{H} \underline{u}_{m+1}[n] ; b_{m}[n]=\underline{a}_{m}^{B T} \underline{\underline{u}}_{m+1}[n]
$$

(1) FLP:
$f_{m}[n]=\left[\begin{array}{c:c}\underline{a}_{m-1}^{H} & 0\end{array}\right]\left[\begin{array}{c}\underline{u}_{m}[n] \\ u[n-m]\end{array}\right]+\Gamma_{m}^{*}\left[\begin{array}{c:c}0 & \underline{a}_{m-1}^{B T}\end{array}\right]\left[\begin{array}{c}u[n] \\ \underline{u}_{m}[n-1]\end{array}\right]$

(Details)

$$
f_{m}[n]=f_{m-1}[n]+\Gamma_{m}^{*} b_{m-1}[n-1]
$$

(2) BLP:

$$
b_{m}[n]=\left[\begin{array}{l:c}
0 & a_{m-1}^{B T}
\end{array}\right]\left[\begin{array}{c}
u[n] \\
\underline{u}_{m}[n-1]
\end{array}\right]+\Gamma_{m}\left[\begin{array}{l:l}
\underline{a}_{m-1}^{*} & 0
\end{array}\right]\left[\begin{array}{c}
\underline{u}_{m}[n] \\
u[n-m]
\end{array}\right]
$$

$$
b_{m}[n]=b_{m-1}[n-1]+\Gamma_{m} f_{m-1}[n]
$$

5 Lattice Predictor
5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Basic Lattice Structure

$$
\left[\begin{array}{c}
f_{m}[n] \\
b_{m}[n]
\end{array}\right]=\left[\begin{array}{cc}
1 & \Gamma_{m}^{*} \\
\Gamma_{m} & 1
\end{array}\right]\left[\begin{array}{c}
f_{m-1}[n] \\
b_{m-1}[n-1]
\end{array}\right], m=1,2, \ldots, M
$$

Signal Flow Graph (SFG)

Modular Structure

Recall $f_{0}[n]=b_{0}[n]=u[n]$, thus

To increase the order, we simply add more stages and reuse the earlier computations.

Using a tapped delay line implementation, we need M separate filters to generate $b_{1}[n], b_{2}[n], \ldots, b_{M}[n]$.
In contrast, a single lattice structure can generate $b_{1}[n], \ldots, b_{M}[n]$ as well as $f_{1}[n], \ldots, f_{M}[n]$ at the same time.

Correlation Properties

Given from a zero-mean w.s.s. process:
(FLP)
$\{u[n-1], \ldots, u[n-M]\}$
$\Rightarrow \quad u[n]$
(BLP)
$\{u[n], u[n-1], \ldots, u[n-M+1]\}$
$\Rightarrow \quad u[n-M]$

1. Principle of Orthogonality
i.e., conceptually

$$
\begin{array}{ll}
\mathbb{E}\left[f_{m}[n] u^{*}[n-k]\right]=0(1 \leq k \leq m) & f_{m}[n] \perp \underline{u}_{m}[n-1] \\
\mathbb{E}\left[b_{m}[n] u^{*}[n-k]\right]=0(0 \leq k \leq m-1) & b_{m}[n] \perp \underline{u}_{m}[n]
\end{array}
$$

2. $\mathbb{E}\left[f_{m}[n] u^{*}[n]\right]=\mathbb{E}\left[b_{m}[n] u^{*}[n-m]\right]=P_{m}$

Proof

Correlation Properties

3. Correlations of error signals across orders:
(BLP)

$$
\mathbb{E}\left[b_{m}[n] b_{i}^{*}[n]\right]=\left\{\begin{array}{ll}
P_{m} & i=m \\
0 & i<m
\end{array} \text { i.e., } b_{m}[n] \perp b_{i}[n]\right.
$$

$$
\begin{equation*}
\mathbb{E}\left[f_{m}[n] f_{i}^{*}[n]\right]=P_{m} \text { for } i \leq m \tag{FLP}
\end{equation*}
$$

Proof: (Details) (can obtain the case $i>m$ by conjugation)

Remark: The generation of $\left\{b_{0}[n], b_{1}[n], \ldots,\right\}$ is like a Gram-Schmidt orthogonalization process on $\{u[n], u[n-1], \ldots$,$\} .$
As a result, $\left\{b_{i}[n]\right\}_{i=0,1, \ldots .}$ is a new, uncorrelated representation of $\{u[n]\}$ containing exactly the same information.

Correlation Properties

4. Correlations of error signals across orders and time:
$\mathbb{E}\left[f_{m}[n] f_{i}^{*}[n-\ell]\right]=\mathbb{E}\left[f_{m}[n+\ell] f_{i}^{*}[n]\right]=0(1 \leq \ell \leq m-i, i<m)$
$\mathbb{E}\left[b_{m}[n] b_{i}^{*}[n-\ell]\right]=\mathbb{E}\left[b_{m}[n+\ell] b_{i}^{*}[n]\right]=0(0 \leq \ell \leq m-i-1, i<m)$
Proof: (Details)
5. Correlations of error signals across orders and time:
$\mathbb{E}\left[f_{m}[n+m] f_{i}^{*}[n+i]\right]= \begin{cases}P_{m} & i=m \\ 0 & i<m\end{cases}$
$\mathbb{E}\left[b_{m}[n+m] b_{i}^{*}[n+i]\right]=P_{m} \quad i \leq m$
Proof: (Details)

Correlation Properties

6. Cross-correlations of FLP and BLP error signals:
$\mathbb{E}\left[f_{m}[n] b_{i}^{*}[n]\right]= \begin{cases}\Gamma_{i}^{*} P_{m} & i \leq m \\ 0 & i>m\end{cases}$
Proof : (Details)

Joint Process Estimator: Motivation

(Readings: Haykin $\S 3.10$; Hayes $\S 7.2 .4, \S 9.2 .8$)
In (general) Wiener filtering theory, we use $\{x[n]\}$ process to estimate a desired response $\{d[n]\}$.

Solving the normal equation may require inverting the correlation matrix \mathbf{R}_{x}.

We now use the lattice structure to obtain a backward prediction error process $\left\{b_{i}[n]\right\}$ as an equivalent, uncorrelated representation of $\{u[n]\}$ that contains exactly the same information.

We then apply an optimal filter on $\left\{b_{i}[n]\right\}$ to estimate $\{d[n]\}$.
5.1 Basic Lattice Structure
5.2 Correlation Properties 5.3 Joint Process Estimator 5.4 Inverse Filtering

Joint Process Estimator: Structure

$$
\hat{d}\left[n \mid \mathbb{S}_{n}\right]=\underline{k}^{H} \underline{b}_{M+1}[n], \text { where } \underline{k}=\left[k_{0}, k_{1}, \ldots, k_{M}\right]^{T}
$$

Joint Process Estimator: Result

To determine the optimal weight to minimize MSE of estimation:
(1) Denote D as the $(M+1) \times(M+1)$ correlation matrix of $\underline{b}[n]$

$$
D=\mathbb{E}\left[\underline{b}[n] \underline{b}^{H}[n]\right]=\operatorname{diag}\left(P_{0}, P_{1}, \ldots, P_{M}\right)
$$

$\because\left\{b_{k}[n]\right\}_{k=0}^{M}$ are uncorrelated
(2) Let \underline{s} be the crosscorrelation vector
$\underline{s} \triangleq\left[s_{0}, \ldots, s_{M} \ldots\right]^{T}=\mathbb{E}\left[\underline{b}[n] d^{*}[n]\right]$
(3) The normal equation for the optimal weight vector is:
$D \underline{k}_{\text {opt }}=\underline{s}$
$\Rightarrow \underline{k}_{\text {opt }}=D^{-1} \underline{s}=\operatorname{diag}\left(P_{0}^{-1}, P_{1}^{-1}, \ldots, P_{M}^{-1}\right) \underline{s}$
i.e., $k_{i}=P_{i}^{-1} s_{i}, i=0, \ldots, M$

Joint Process Estimator: Summary

The name "joint process estimation" refers to the system's structure that performs two optimal estimation jointly:

- One is a lattice predictor (characterized by $\Gamma_{1}, \ldots, \Gamma_{M}$) transforming a sequence of correlated samples $u[n]$, $u[n-1], \ldots, u[n-M]$ into a sequence of uncorrelated samples $b_{0}[n], b_{1}[n], \ldots, b_{M}[n]$.
- The other is called a multiple regression filter (characterized by \underline{k}), which uses $b_{0}[n], \ldots, b_{M}[n]$ to produce an estimate of $d[n]$.

Inverse Filtering

The lattice predictor discussed just now can be viewed as an analyzer, i.e., to represent an (approximately) AR process $\{u[n]\}$ using $\left\{\Gamma_{m}\right\}$.

With some reconfiguration, we can obtain an inverse filter or a synthesizer, i.e., we can reproduce an AR process by applying white noise $\{v[n]\}$ as the input to the filter.
5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

A 2-stage Inverse Filtering

$$
\begin{aligned}
u[n] & =v[n]-\Gamma_{1}^{*} u[n-1]-\Gamma_{2}^{*}\left(\Gamma_{1} u[n-1]+u[n-2]\right) \\
& =v[n]-\underbrace{\left(\Gamma_{1}^{*}+\Gamma_{1} \Gamma_{2}^{*}\right)}_{d_{2,1}^{*}} u[n-1]-\underbrace{\Gamma_{2}^{*}}_{d_{2,2}^{*}} u[n-2]
\end{aligned}
$$

$\therefore u[n]+a_{2,1}^{*} u[n-1]+a_{2,2}^{*} u[n-2]=v[n]$
$\Rightarrow\{u[n]\}$ is an $\mathbf{A R}(2)$ process.

Basic Building Block for All-pole Filtering

$$
\left\{\begin{array}{l}
x_{m-1}[n]=x_{m}[n]-\Gamma_{m}^{*} y_{m-1}[n-1] \\
y_{m}[n]=\Gamma_{m} x_{m-1}[n]+y_{m-1}[n-1] \\
\quad=\Gamma_{m} x_{m}[n]+\left(1-\left|\Gamma_{m}\right|^{2}\right) y_{m-1}[n-1]
\end{array}\right.
$$

$$
\Rightarrow\left\{\begin{array}{l}
x_{m}[n]=x_{m-1}[n]+\Gamma_{m}^{*} y_{m-1}[n-1] \\
y_{m}[n]=\Gamma_{m} x_{m-1}[n]+y_{m-1}[n-1]
\end{array}\right.
$$

$$
\therefore\left[\begin{array}{l}
x_{m}[n] \\
y_{m}[n]
\end{array}\right]=\left[\begin{array}{cc}
1 & \Gamma_{m}^{*} \\
\Gamma_{m} & 1
\end{array}\right]\left[\begin{array}{c}
x_{m-1}[n] \\
y_{m-1}[n-1]
\end{array}\right]
$$

All-pole Filter via Inverse Filtering

$$
\left[\begin{array}{l}
x_{m}[n] \\
y_{m}[n]
\end{array}\right]=\left[\begin{array}{cc}
1 & \Gamma_{m}^{*} \\
\Gamma_{m} & 1
\end{array}\right]\left[\begin{array}{c}
x_{m-1}[n] \\
y_{m-1}[n-1]
\end{array}\right]
$$

This gives basically the same relation as the forward lattice module:

$\Rightarrow u[n]=-a_{2,1}^{*} u[n-1]-a_{2,2}^{*} u[n-2]+v[n] \quad v[n]$: white noise

